Tim Claridge

Photo of Tim Claridge

Professor Tim Claridge

Visiting Professor of Nuclear Magnetic Resonance






Research Interests

My research interests have revolved around the application and development of solution-state NMR techniques to address questions of structure, function, dynamics and interactions of molecules, specifically within the context of organic chemistry and chemical biology. Many of the projects in which I was involved arose through collaborations with groups across the Department, the University and beyond.

NMR Supersequences for efficient structure characterisation

We are developing families of time-efficient NMR "supersequences" we refer to as NOAH (NMR by Ordered Acquisition using 1H detection) that can provide a significant reduction in the time required for collecting 2D data sets used for the characterisation of small molecules and may also offer sensitivity benefits in some cases. These experiments function by nesting multiple conventional 2D experiments into one, thereby reducing the number of lengthy magnetisation recovery delays required in data acquisition. This work is in collaboration with Dr Eriks Kupce of Bruker Biospin UK. 

Protein-ligand interactions and protein function probed by NMR Spectroscopy

The interaction of small molecules and peptides with protein targets is an area in which NMR spectroscopy plays a key role, providing information on the behaviour of the smaller molecule and on structural changes in the protein itself. We use a wide range of ligand-observe and protein-observe techniques to probe such interactions (such as relaxation filtering, saturation transfer difference, WaterLOGSY and chemical shift perturbation studies) and we apply these methods to a variety biological systems. Whilst much of or work involves ligand-observe techniques, we employ protein-observe methods when isotopically labelled macromolecules are available, for example via non-specific (backbone) 15N or specific (sidechain) 19F labelling. The protein systems we study have relevance to mechanisms of mammalian oxygen sensing, epigenetics and antibacterial resistance and arise from collaborations with Profs Chris Schofield (Chemistry), Akane Kawamura (Newcastle) and others. 

NMR metabolomics

In a collaboration with the group of Dr. Fay Probert (Chemistry), we apply NMR spectroscopy to metabolomics- the study of the complete metabolite profile in a biofluid or tissue- with a view to assisting in disease diagnosis and/or monitoring disease progression. We have applied this methodology to various conditions of interest to local clinical groups including multiple sclerosis and cancer, also in collaboration with Prof Daniel Anthony (Pharmacology) and Prof Niki Sibson (Oncology). NMR spectroscopy is well suited to such studies as it is robust, reproducible and inherently quantitative, as well as requiring minimal sample preparation. It complements the mass spectrometry metabolomics research program in the group of Prof James McCullagh (Chemistry).


Tim Claridge is Visiting Professor of Nuclear Magnetic Resonance in the Department of Chemistry and head of NMR operations at Exscientia Ltd. He has contributed to over 250 research publications and written a number of text books covering NMR spectroscopy including High-Resolution NMR Techniques in Organic Chemistry (Elsevier) now in its 3rd edition.

Tim has served on the committee of the UK Royal Society of Chemistry NMR Discussion Group (1998-2009) and served as its Chairman for three years (2006-2009). In 2012 he co-founded the UK Magnetic Resonance Managers (UKMRM) group and remains on the management committee. He also currently serves as secretary on the organising committee of the SMASH (Small Molecules Are Still Hot) International NMR conference and is on the Advisory Board for the journal Magnetic Resonance in Chemistry

Tim’s first degree was in Chemistry and Analytical Science at Loughborough University, during which he undertook an industrial year in the spectroscopy laboratory at (what was then) Beecham Pharmaceuticals (now part of GlaxoSmithKline). This was followed by a DPhil in Oxford, under the supervision of the late Andy Derome, studying protein function by NMR spectroscopy, during which he was also a member of Wolfson College.




Research group

NMR Facility