Catalytic coupling of carbon dioxide with epoxide to cyclic carbonate is an important reaction that has recently been receiving renewed interest. This route allows the use of carbon dioxide as a greener chemical feedstock, which challenges the current practices for the synthesis of cyclic carbonates and derivatives. The present study is mainly concerned with catalytic coupling reaction between CO(2) and propylene oxide using organic amine as catalyst. The structural aspects of amines and the effects of their immobilization on solid surfaces on reaction kinetics are particularly studied. It is found that 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) amine maintains high catalytic activity both with and without solid support, but other primary amines, such as p-phenylenediamine give much reduced activity when placed on a solid surface. It is attributed to the absence of surface hydrogen in the supported TBD, prohibiting the catalyst sites from CO(2) poisoning. The coupling of other epoxides, including epichlorohydrin and styrene oxide over the solid supported amine, is also briefly carried out. Reaction mechanisms are proposed to explain the experimental observations.