Protein interactions studied by SAXS: Effect of ionic strength and protein concentration for BSA in aqueous solutions

Zhang F, Skoda MWA, Jacobs RMJ, Martin RA, Martin CM, Schreiber F

We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 × 42 × 42 Å, combined with either a screened Coulomb, repulsive structure factor, SSc(q), or an attractive square-well structure factor, SSW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength. © 2007 American Chemical Society.